

Subaperture stitching interferometry for large aspheric optics

Marc Tricard and Paul Murphy

1040 University Avenue, Rochester, NY • USA +1 (585) 256-6540 • tricard@qedmrf.com • www.qedmrf.com

Acknowledgements:

Dr. Jim Kirsch – Army RDECOM Scott Antonille – NASA Goddard

- Motivation
- Subaperture stitching interferometer (SSI®): background
- Aspheric Optics: success of the SSI-A™
 - Non-null interferometric testing
 - Measurement results
- Large Optics: scaling the SSI[®]
- Conclusions

Motivation

"If you can't measure it, you can't make it"

- Corollary: the quality of your measurement limits the quality of optical surface you can make
- And therefore we want our metrology to be:
 - Full aperture, for deterministic correction of the whole surface
 - Accurate, to achieve tighter optical specifications
 - High resolution, to correct edges and other small features
 - <u>Flexible</u>, to minimize custom tooling and lead time
- Solve needs for Aspheric Metrology
 - Increase aspheric departure measurement capability of standard Fizeau interferometer with no auxiliary nulling optics
 - Obtain accuracy comparable to CGH null
 - Obtain high lateral resolution
 - Obtain quality measurement with ordinary skill
- Subaperture stitching can address all these needs

Subaperture Stitching Interferometer (SSI®)

- Precision six axis machine
 - Engineered in cooperation with Schneider Opticmachines
- Standard Zygo® 4" or 6" interferometer
- QED control software: automation + advanced algorithms

SSI advantages

- Cost-effective measurement of larger apertures
- Automatic, inline calibration of systematic error
- Increased lateral resolution
- Measures mild aspheres without dedicated nulls!

SSI measurement process

Overview of stitching benefits

- Increased lateral dynamic range
 - Increased lateral range (large clear and/or numerical aperture)
 - Can improve lateral resolution (data density)
- Superior accuracy
 - Automatic computation or measurement of reference wave
 - Calculation of mapping errors (pixel scale, distortion)
 - Reduced cavity lengths for concave mirrors
- Avoid dedicated nulls for asphere testing
 - Extended non-null test capability
- These benefits can also apply to mid-spatial frequency measurements (in addition to surface form)

The SSI measures parts that a 6" interferometer cannot test

Large numerical aperture

Large clear aperture

ED Non-null test example Technologies

o Very mild hyperbola: 3.1 μm departure

Non-null measurement (spherical reference – measurement is deviation from best-fit sphere, not asphere)

3 μm scale

(close to the slope limit of a standard interferometer)

Deviation from asphere (nominal aspheric prescription subtracted from the measurement)

ED Non-null test issues and solutions

Fringe resolution

- Dense fringes cannot be resolved, limiting the amount of aspheric departure measurable in a non-null test
- Use slower transmission sphere (higher magnification) + stitch

Retrace error

- Many fringes in view induce systematic error
- Automatically model and compensate with stitching

Remove nominal shape

- More sensitive to alignment, lateral calibration, and distortion
- Precise motion + automatic computation + compensation

Increasing measurable aspheric departure: how does it work?

- Magnification is key for resolving dense fringes
 - Simulated fringes for ~50 μm aspheric departure
 - Most of the data is unresolvable in the full aperture

Full aperture

67% zone subaperture (& local best-fit sphere)

Slide 10 www.qedmrf.com 8/17/2006

SSI-A example #1

- o Radius ~ -310 mm,
- Aperture 110 mm,
- ~20 μm departure
- ellipsoid

Stitch map (+lattice)

33 subapertures w/ 6" f/3.2

Example #1 performance data

- Results are both repeatable and have good agreement with a CGH cross-test
 - Higher resolution in stitch map
 - SSI auto-calibrates; CGH calibration more difficult

Slide 12

SSI-A example #2 Technologies (more departure: ~50 μm)

- Radius ~ 22 mm
- Aperture 25 mm
- ~50 µm departure

Stitch map (+lattice)

35 subapertures w/ 6" f/2.2

Central subap

Off-axis subap

SSI-A example #3 (high quality: <5 nm rms)

- Part manufactured by SSG-Tinsley for a NASA SBIR
 - ~100 mm aperture diameter, base radius -226 mm
 - Ellipsoid (conic), with ~12 μm of aspheric departure
 - Lightweighted silicon carbide with silicon cladding

Used as a secondary mirror for the PICTURE/SHARPI

sounding rocket programs

SSI-ATM example 3: test setup

F/7.2 TS for stitch

Lattice #1 balances speed and accuracy

Lattice #2 is denser, slightly improving accuracy

Note: Null test is F/1.5

Subaperture 38 mm off axis

L3-SSG-Tinsley Si-clad SiC EUV M2

Clear Aperture 3.864" Diameter

communications
SSG-Tinsley

Example #3 performance data

- Good agreement with existing null test
 - Stitched measurement resolves finer structure

Larger optics: scaling the SSI®

- Larger parts have slightly different requirements
 - Mechanical distortion of the surface increases with part size
 - Moving (particularly tilting) the part is not desirable
 - Part takes a longer time to thermally stabilize
 - Transmission and nulling optics are not easy to scale up
- Stitching appears extensible to larger optics
 - The workstation needs some changes
 - Increased size and larger X travel
 - Tilt the interferometer, not the part
 - Using a 6" interferometer mainframe is preferred
 - A larger system adds considerable cost!
 - Larger mainframe = harder to move
 - Custom transmission spheres = long lead times

See Mirror Tech Days 2005 presentation on stitching:

http://optics.nasa.gov/tech_days/tech_days_2005/index.html

Larger platform concept

Stitching Redefines the Boundaries

Resolution

Accuracy

Aperture size

Aspheric departure

Conclusion:

Stitching boosts all these... but we'll always want more.

Subaperture stitching interferometry for advanced metrology solutions

Marc Tricard and Paul Murphy

1040 University Avenue, Rochester, NY • USA +1 (585) 256-6540 • tricard@qedmrf.com • www.qedmrf.com

Acknowledgements:

Dr. Jim Kirsch – Army RDECOM Scott Antonille – NASA Goddard